#Paimon

本文已收录在合集Apche Flink原理与实践中.

自Google”三驾马车”伊始, 大数据处理技术已经发展了二十年. 在前十年中, Hive+Spark这套离线处理技术就已经基本完善; 近十年来, Flink的快速发展又有效地解决了实时处理的问题. 然而, 低成本的近实时处理依然面临挑战. 近来, 随着业界对近实时处理及流批一体架构的需求愈发强烈, 增量计算开始重新被关注. Flink在1.20中推出了Materialized Table(MT)来统一流批两种模式的处理, 配合Paimon已有的Changelog存储能力, 开源低成本增量计算的曙光已至.

本文首先介绍增量计算相关的概念, 随后结合Flink和Paimon两个引擎通过具体案例来介绍当前开源引擎增量计算的能力. 从中我们可以得出当前的增量计算还有哪些不足, 亦可窥视其未来发展方向.

Read More

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×