#Hadoop YARN

本文是Hadoop YARN原理系列的第二篇, 主要讲述如何编写YARN Application. 实际上, MapReduce, Spark以及Flink等框架在YARN上运行时, 都可以视为一种特定的YARN Application. 不过这些系统的on YARN模式实现都是生产级别的, 代码相对复杂, 所以本文并不打算以这些系统的on YARN实现为例分析如何编写YARN Application, 而是以Hadoop自带的hadoop-yarn-applications-distributedshell(后文简称DistributedShell)为例进行讲述. DistributedShell可以在YARN的Container上执行用户指定的Shell命令或脚本, 虽然简单, 却包含了编写一个YARN Application的完整内容.

Read More

YARN(Yet Another Resource Negotiator)是一个分布式的资源调度和管理系统, 负责管理和分配集群的资源(目前主要是vcores和memory), 在一些资料中形象地把YARN比作一个分布式的操作系统. YARN在Hadoop 2.x中引入, 目前已经有批式, 流式, 机器学习等多种类型的计算框架支持在YARN上运行, 如Spark, Flink, Tensorflow等框架都对YARN有成熟的支持. YARN已经成为名副其实的”数据操作系统”.

Read More

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×