本文已收录在合集Apche Flink原理与实践中.
Flink SQL函数丰富了SQL层的数据处理能力, 除了大量的内置函数, Flink还支持用户自定义函数(User-defined function, UDF). 在Flink SQL优化器中, 会对函数进行多层转换, 本文将对此进行详细介绍. 理解了这一流程, 便可为Flink添加更多内置函数, 亦可理解UDF的执行原理与可能出现的问题.
本文已收录在合集Apche Flink原理与实践中.
Flink SQL函数丰富了SQL层的数据处理能力, 除了大量的内置函数, Flink还支持用户自定义函数(User-defined function, UDF). 在Flink SQL优化器中, 会对函数进行多层转换, 本文将对此进行详细介绍. 理解了这一流程, 便可为Flink添加更多内置函数, 亦可理解UDF的执行原理与可能出现的问题.
本文已收录在合集Apche Calcite原理与实践中.
本文是Apache Calcite原理与实践系列的第七篇. 上一篇文章介绍了Calcite中的规则优化器HepPlanner, 本文将介绍成本优化器VolcanoPlanner. VolcanoPlanner是Volcano/Cascades风格的优化器, 支持基于成本的搜索, 并具有良好的扩展性. 本文首先介绍VolcanoPlanner中相关的概念和数据结构, 之后介绍现有的两种优化算法.
本文已收录在合集Apche Calcite原理与实践中.
本文是Apache Calcite原理与实践系列的第六篇. 上一篇文章介绍了与查询优化器相关的基本理论, 本文开始介绍Calcite中的查询优化器HepPlanner的实现, HepPlanner是基于规则的优化器, 相对于VolcanoPlanner来说实现比较简单. 本文首先介绍HepPlanner中引入的相关概念和数据结构, 之后介绍HepPlanner的整个优化流程.
本文已收录在合集Apche Calcite原理与实践中.
本文是Apache Calcite原理与实践系列的第五篇. 经过前面几篇文章的铺垫, 本文终于开始进入Calcite中最为核心的查询优化器的介绍. 由于查询优化器所涉及的概念多且实现逻辑复杂, 后续将分几篇文章进行介绍. 本文首先介绍与查询优化相关的理论基础, 之后介绍Calcite中与查询优化相关的概念和数据结构. 后面的两篇文章将具体介绍Calcite中的两个优化器, HepPlanner和VolcanoPlanner的实现细节.
本文已收录在合集Apche Flink原理与实践中.
Flink原始的Source接口(SourceFunction
)随着Flink在数据集成和流批一体上的不断发展, 暴露出了越来越多的问题. 为了实现更优雅的数据接入, 社区提出了FLIP-27来重构Source接口. 新的Source接口已经在Flink 1.12中得到实现, 该接口将成为Flink数据接入的新标准. 虽然FLIP-27为流式数据的读取抽象了优雅的接口, 但是这些接口的实现和交互逻辑较为复杂, 如果不能准确理解其实现原理, 就很难写出正确的Connector. 本文以Kafka Connector为例, 详细介绍FLIP-27 Source接口的实现原理.
Update your browser to view this website correctly. Update my browser now